CATL 宁德时代

NFPA855 Compliance Assessment on EnerOne

Prepare by: SIT

2022/4/26

Summary

- UL9540A-V4 test on cell/module/cabinet level, only smoking, no fire, no flying debris, no explosive discharge of gas, no sparks or electrical arcs. The test show there is pretty low risk when thermal runaway happened in cabinet
- CATL chooses the cabinet door to relieve deflagration pressure to meet the requirements of NFPA68. The simulation and experimental results show that when combustible smoke is manually ignited, the door is popped open and can be relieve the inner pressure of cabinet, the structure of cabinet is only slightly deformed, and no flying debris
- So, CATL believes that the use of doors to release the deflagration pressure inside the cabinet can meet the requirements of NFPA68, and it meets the requirements of NFPA855 explosion control

UL9540A-V4 Test on Cell/Module/Cabinet

UL9540A-V4 test on cell level

• Gas volume is ~220L, and cell gas composition as see below table

Gas		Measured/%	Gas		Measured/%
Carbon Monoxide	CO	11.1	Ethylene	C2H4	5.3
Carbon Dioxide	CO2	33.3	Ethane	C2H6	1.1
Hydrogen	H2	35.7	Propene	C3H6	0.6
Methane	CH4	10.1	Propane	C3H8	0.2
Acetylene	C2H2	0.2	Others	/	2.5

CATL 宁德时代

UL9540A-V4 test on module level

Test Scheme

- 4~7°C/min heating until cell thermal runaway
- Forced adjacent cell to thermal propagation

Test Platform

Target cell thermal runaway, and adjacent cell to thermal propagation (Total three cell thermal runaway)
Smoking, no fire, no flying debris, no explosive discharge of gas, no sparks or electrical arcs

Test Results

Thermal propagation

After test

Summary of battery gas volumes identified during thermal runaway in module test

Gas Component	Gas Type	During Pre-flaming (L)	During Flaming(L)	
Total Hydrocarbons	Hydrocarbons	147		
Carbon Dioxide	Carbon Containing	37	No floming	
Carbon Monoxide	Carbon Containing	111	No haming	
Hydrogen	Hydrogen	116		
			2022/4/26	

CATL 宁德时代

UL9540A-V4 test on cabinet level

٠

Test Scheme

- 4~7°C/min heating until cell thermal runaway
- Forced adjacent cell to thermal propagation

Test Platform

Target cell thermal runaway, and adjacent cell to thermal propagation (Total three cell thermal runaway)

Test Results

Smoking, no fire, no flying debris, no explosive discharge of gas, no sparks or ٠ electrical arcs

Smoke leakage from rack

More fumes leakage from rack

Smoke gradually decrease

Explosion Control Scheme

NFPA 855 related Protocol Analysis

Regarding explosion control, NFPA855 suggests two solution: explosion prevention or deflagration venting, and CATL chooses deflagration venting

Explosion Pressure Simulation on Cabinet Level

EnerOne_outdoor liquid -cooled electrical cabinet

- Independent electrical compartment and battery compartment design
- All the wall of the cabinet adopts the sandwich structure, which can thermal insulator
- CATL adopts the cabinet door to deflagration venting

Deflagration venting design

□ Assuming that combustible smoke is ignited, and deflagration (worse case)

- The simulation results show that, the door is opened when the pressure reaches about 0.03MPa, and other structures have no failed
- So, plug of door lock is used as the weak point of the cabinet, and the door can be relieve the inner pressure of cabinet

Deflagration venting analysis by CFD simulation

- **Simulation purpose**: Conduct computational fluid dynamics (CFD) simulations to determine the pressure-time history for a worst-case deflagration inside of EnerOne energy storage cabinet
- Simulation software: FLACS-CFD software from Gexcon
- **Deflagration venting**: The door is modeled as a hinged rigid pressure relief panel, which can open at 0.03MPa
- Flammable gas: As below table, the composition and proportion data of combustible gas comes from UL9540A test
- **Ignition location**: A single point in front of and between the two modules in the center of the cabinet, since all the wiring and opening to the modules are on the front

Gas	Volume Fraction/%	
Carbon Monoxide	CO	11.1
Carbon Dioxide	CO2	33.3
Hydrogen	H2	35.7
Methane	CH4	10.0
Acetylene	C2H2	0.2
Ethylene	C2H4	5.5
Ethane	C2H6	1.1
Propane	C3H8	3.2

Gas composition used in CFD model

<image>

1:

Deflagration venting analysis by CFD simulation

- The CFD simulation results show that the door can be relieve the inner pressure of cabinet, and the maximum pressure is 75KPa
- This model predicts that the flames will extend no farther than 2 meters from the door of the cabinet
- The model predicts that the overpressure outside of the cabinet will not exceed 2KPa beyond 3 meters from the cabinet's door.

Simulation results: pressure-time history

Simulation results: Temperature & Overpressure

This CFD model has shown that the predicted maximum overpressure inside the battery compartment is 75KPa while the maximum pressure at the center of the rear wall is 67KPa and the maximum pressure at the center of the side walls is 57KPa

In the model results, the door began to open at 0.027 seconds after ignition, and flames began to escape from the open side of the door soon

CATL 宁德时代

Temperatures indicate that flames do not extend more than 2 meters from the cabinet.

2D plot of pressure contours showing the modules on the left and the pressure wave propagating out the door on the right ¹³

Experiment scheme of deflagration venting

- Adopt the heating method recommended by UL9540A, 4~7°C/min heating until cell thermal runaway
- Forced adjacent cell to thermal propagation, as below test scheme
- Ignition location: in the front of battery compartment and directly above the trigger pack
- After trigger cell thermal runaway, and adjacent cell thermal propagation, activate the artificial ignition

Experiment results of deflagration venting

- Cabinet door is popped open, and relieve the inner pressure
- The structure of cabinet remains intact, not found obvious deformation or breakage
- No other objects fly out from the battery compartment, no impact on adjacent cabinet

After test:

Conclusion and Suggestion

Conclusion

- UL9540A-V4 test on cell/module/cabinet level, only smoking, no fire, no flying debris, no explosive discharge of gas, no sparks or electrical arcs. The test show there is pretty low risk when thermal runaway happened in cabinet
- The simulation and experimental results show that when combustible smoke is manually ignited, the door is popped open and can be relieve the inner pressure of cabinet, the structure of cabinet is only slightly deformed, and no flying debris. CATL believes that the use of doors to release the deflagration pressure inside the cabinet can meet the requirements of NFPA68, and it meets the requirements of NFPA855 explosion control
- **D** Suggestion
- When the fire alarm, an isolation area should be set up to prevent personnel from approaching the cabinet

CATL 宁德时代

THANK YOU

catlbattery.com